Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity.

Identifieur interne : 002869 ( Main/Exploration ); précédent : 002868; suivant : 002870

Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity.

Auteurs : Hui Wei [États-Unis] ; Melvin P. Tucker ; John O. Baker ; Michelle Harris ; Yonghua Luo ; Qi Xu ; Michael E. Himmel ; Shi-You Ding

Source :

RBID : pubmed:22490508

Abstract

BACKGROUND

Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars.However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process.

RESULTS

In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera) wood-chips and mown lawn grass clippings (85:15 in dry-weight) and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed.

CONCLUSION

The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP) and solid-state fermentation for the production of cellulolytic enzymes and biofuels.


DOI: 10.1186/1754-6834-5-20
PubMed: 22490508
PubMed Central: PMC3384452


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity.</title>
<author>
<name sortKey="Wei, Hui" sort="Wei, Hui" uniqKey="Wei H" first="Hui" last="Wei">Hui Wei</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA. Hui.Wei@nrel.gov.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tucker, Melvin P" sort="Tucker, Melvin P" uniqKey="Tucker M" first="Melvin P" last="Tucker">Melvin P. Tucker</name>
</author>
<author>
<name sortKey="Baker, John O" sort="Baker, John O" uniqKey="Baker J" first="John O" last="Baker">John O. Baker</name>
</author>
<author>
<name sortKey="Harris, Michelle" sort="Harris, Michelle" uniqKey="Harris M" first="Michelle" last="Harris">Michelle Harris</name>
</author>
<author>
<name sortKey="Luo, Yonghua" sort="Luo, Yonghua" uniqKey="Luo Y" first="Yonghua" last="Luo">Yonghua Luo</name>
</author>
<author>
<name sortKey="Xu, Qi" sort="Xu, Qi" uniqKey="Xu Q" first="Qi" last="Xu">Qi Xu</name>
</author>
<author>
<name sortKey="Himmel, Michael E" sort="Himmel, Michael E" uniqKey="Himmel M" first="Michael E" last="Himmel">Michael E. Himmel</name>
</author>
<author>
<name sortKey="Ding, Shi You" sort="Ding, Shi You" uniqKey="Ding S" first="Shi-You" last="Ding">Shi-You Ding</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22490508</idno>
<idno type="pmid">22490508</idno>
<idno type="doi">10.1186/1754-6834-5-20</idno>
<idno type="pmc">PMC3384452</idno>
<idno type="wicri:Area/Main/Corpus">002A81</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002A81</idno>
<idno type="wicri:Area/Main/Curation">002A81</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002A81</idno>
<idno type="wicri:Area/Main/Exploration">002A81</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity.</title>
<author>
<name sortKey="Wei, Hui" sort="Wei, Hui" uniqKey="Wei H" first="Hui" last="Wei">Hui Wei</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA. Hui.Wei@nrel.gov.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tucker, Melvin P" sort="Tucker, Melvin P" uniqKey="Tucker M" first="Melvin P" last="Tucker">Melvin P. Tucker</name>
</author>
<author>
<name sortKey="Baker, John O" sort="Baker, John O" uniqKey="Baker J" first="John O" last="Baker">John O. Baker</name>
</author>
<author>
<name sortKey="Harris, Michelle" sort="Harris, Michelle" uniqKey="Harris M" first="Michelle" last="Harris">Michelle Harris</name>
</author>
<author>
<name sortKey="Luo, Yonghua" sort="Luo, Yonghua" uniqKey="Luo Y" first="Yonghua" last="Luo">Yonghua Luo</name>
</author>
<author>
<name sortKey="Xu, Qi" sort="Xu, Qi" uniqKey="Xu Q" first="Qi" last="Xu">Qi Xu</name>
</author>
<author>
<name sortKey="Himmel, Michael E" sort="Himmel, Michael E" uniqKey="Himmel M" first="Michael E" last="Himmel">Michael E. Himmel</name>
</author>
<author>
<name sortKey="Ding, Shi You" sort="Ding, Shi You" uniqKey="Ding S" first="Shi-You" last="Ding">Shi-You Ding</name>
</author>
</analytic>
<series>
<title level="j">Biotechnology for biofuels</title>
<idno type="eISSN">1754-6834</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars.However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera) wood-chips and mown lawn grass clippings (85:15 in dry-weight) and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP) and solid-state fermentation for the production of cellulolytic enzymes and biofuels.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">22490508</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>10</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1754-6834</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2012</Year>
<Month>Apr</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>Biotechnology for biofuels</Title>
<ISOAbbreviation>Biotechnol Biofuels</ISOAbbreviation>
</Journal>
<ArticleTitle>Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity.</ArticleTitle>
<Pagination>
<MedlinePgn>20</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1754-6834-5-20</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars.However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera) wood-chips and mown lawn grass clippings (85:15 in dry-weight) and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP) and solid-state fermentation for the production of cellulolytic enzymes and biofuels.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wei</LastName>
<ForeName>Hui</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA. Hui.Wei@nrel.gov.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tucker</LastName>
<ForeName>Melvin P</ForeName>
<Initials>MP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baker</LastName>
<ForeName>John O</ForeName>
<Initials>JO</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Harris</LastName>
<ForeName>Michelle</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Luo</LastName>
<ForeName>Yonghua</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Qi</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Himmel</LastName>
<ForeName>Michael E</ForeName>
<Initials>ME</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ding</LastName>
<ForeName>Shi-You</ForeName>
<Initials>SY</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>04</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biotechnol Biofuels</MedlineTA>
<NlmUniqueID>101316935</NlmUniqueID>
<ISSNLinking>1754-6834</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>01</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>04</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>4</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>4</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>4</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22490508</ArticleId>
<ArticleId IdType="pii">1754-6834-5-20</ArticleId>
<ArticleId IdType="doi">10.1186/1754-6834-5-20</ArticleId>
<ArticleId IdType="pmc">PMC3384452</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Microb Ecol. 2008 Oct;56(3):467-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18264658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2007 Sep 1;98(1):112-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17335064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2006 May;97(8):973-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15990291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2003 Sep;5(9):787-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12919414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 2009 Apr;58(4):294-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19018588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2006 Dec;5(12):2128-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17056741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2007 Dec;103(6):2676-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18045448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2000 Nov;66(11):4605-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11055900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2006 Oct;41(4):435-6, 438, 440 passim</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17068959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2002 Jan;148(Pt 1):257-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11782518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2007 Nov;103(5):1757-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17953586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2010 Jan;12(1):105-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19735279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2008 Nov;99(16):7623-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18346891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Nov 1;15(21):5739-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8918451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2003;94(1):127-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12492933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Nov;64(11):4333-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9797286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Sep;154(1):121-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20592039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2005 Oct;16(5):577-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16154338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2011;4(1):23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21816041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Sep;64(9):3536-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9726913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci Bioeng. 2003;96(4):337-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16233533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2010 Aug 25;58(16):9054-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20669952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1999 Aug;65(8):3293-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10427009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Insect Biochem Mol Biol. 2007 Dec;37(12):1366-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17967355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2009 Dec;70(3):540-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19694811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1985 Jan;49(1):205-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16346697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2008 Jun;112(Pt 6):674-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18495449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 2007 Mar;68(3):445-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17126937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2009 Jun;20(3):330-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19523812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Jul;71(7):4117-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16000830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 Nov;74(21):6554-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18791032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Nov;69(11):6825-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14602646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2007 Dec;98(18):3634-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17207619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1996 Oct;62(10):3697-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8837425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Feb;101(4):1385-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19781936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(1):e8812</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20098679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Apr 22;308(5721):554-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15845853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2010;48:395-417</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20455700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2005 Dec;6(12):1208-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16200051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Apr 20;49(15):3305-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20230050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2005 Dec;274(5):454-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16231151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2007 Jun;18(3):237-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17462879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1994 Oct 11;148(1):161-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7926830</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Colorado</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Baker, John O" sort="Baker, John O" uniqKey="Baker J" first="John O" last="Baker">John O. Baker</name>
<name sortKey="Ding, Shi You" sort="Ding, Shi You" uniqKey="Ding S" first="Shi-You" last="Ding">Shi-You Ding</name>
<name sortKey="Harris, Michelle" sort="Harris, Michelle" uniqKey="Harris M" first="Michelle" last="Harris">Michelle Harris</name>
<name sortKey="Himmel, Michael E" sort="Himmel, Michael E" uniqKey="Himmel M" first="Michael E" last="Himmel">Michael E. Himmel</name>
<name sortKey="Luo, Yonghua" sort="Luo, Yonghua" uniqKey="Luo Y" first="Yonghua" last="Luo">Yonghua Luo</name>
<name sortKey="Tucker, Melvin P" sort="Tucker, Melvin P" uniqKey="Tucker M" first="Melvin P" last="Tucker">Melvin P. Tucker</name>
<name sortKey="Xu, Qi" sort="Xu, Qi" uniqKey="Xu Q" first="Qi" last="Xu">Qi Xu</name>
</noCountry>
<country name="États-Unis">
<region name="Colorado">
<name sortKey="Wei, Hui" sort="Wei, Hui" uniqKey="Wei H" first="Hui" last="Wei">Hui Wei</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002869 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002869 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22490508
   |texte=   Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22490508" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020